Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
AJOG Glob Rep ; 3(2): 100192, 2023 May.
Article in English | MEDLINE | ID: covidwho-2297021

ABSTRACT

BACKGROUND: Immune changes that occur during pregnancy may place pregnant women at an increased risk for severe disease following viral infections like SARS-CoV-2. Whether these immunologic changes modify the immune response to SARS-CoV-2 infection during pregnancy is not well understood. OBJECTIVE: This study aimed to compare the humoral immune response to SARS-CoV-2 infection in pregnant and nonpregnant women. The immune response following vaccination for SARS-CoV-2 was also explored. STUDY DESIGN: In this cohort study, 24 serum samples from 20 patients infected with SARS-CoV-2 during pregnancy were matched by number of days after a positive test with 46 samples from 40 nonpregnant women of reproductive age. Samples from 9 patients who were vaccinated during pregnancy were also examined. Immunoglobulin G and immunoglobulin M levels were measured. Trends in the log antibody levels over time and mean antibody levels were assessed using generalized estimating equations. RESULTS: The median number of days from first positive test to sampling was 6.5 in the pregnant group (range, 3-97) and 6.0 among nonpregnant participants (range, 2-97). No significant differences in demographic or sampling characteristics were noted between the groups. No differences in immunoglobulin G or immunoglobulin M levels over time or mean antibody levels were noted among pregnant and nonpregnant participants following SARS-CoV-2 infection for any of the SARS-CoV-2 antigen targets examined (spike, spike receptor-binding domain, spike N-terminal domain, and nucleocapsid). Participants who were vaccinated during pregnancy had higher immunoglobulin G levels than pregnant patients who tested positive for all SARS-CoV-2 targets except nucleocapsid antibodies (all P<.001) and had lower immunoglobulin M spike (P<.05) and receptor-binding domain (P<.01) antibody levels. CONCLUSION: This study suggests that the humoral response following SARS-CoV-2 infection does not seem to differ between pregnant women and their nonpregnant counterparts. These findings should reassure patients and healthcare providers that pregnant patients seem to mount a nondifferential immune response to SARS-CoV-2.

2.
AJOG global reports ; 2023.
Article in English | EuropePMC | ID: covidwho-2264259

ABSTRACT

Background Immune changes that occur during pregnancy may place pregnant women at an increased risk for severe disease following viral infections like SARS-CoV-2. Whether these immunological changes modify immune response to SARS-CoV-2 infection during pregnancy is not well understood. Objective The objective of the present study is to compare humoral immune response to SARS-CoV-2 infection in pregnant and non-pregnant women. Immune response following vaccination for SARS-CoV-2 was also explored. Study Design In the present cohort study, 24 serum samples from 20 patients infected with SARS-CoV-2 during pregnancy were matched on number of days post positive test to 46 samples from 40 non-pregnant women of reproductive age. Samples from nine patients vaccinated during pregnancy were also examined. Immunoglobulin G (IgG) and immunoglobulin M (IgM) antibody levels were measured. Trends in log antibody levels over time and mean antibody levels were assessed using generalized estimating equations. Results Median number of days from first positive test to sampling was 6.5 in the pregnant group (range 3-97) and 6.0 among non-pregnant participants (range 2-97). No significant differences in demographic or sampling characteristics were noted between groups. No differences in IgG or IgM levels over time or mean antibody levels were noted in pregnant and non-pregnant participants following SARS-CoV-2 infection for any of the SARS-CoV-2 antigens targets examined [Spike, Spike Receptor Binding Domain (RBD), Spike N-Terminal Domain (NTD), and Nucleocapsid]. Participants vaccinated during pregnancy had higher IgG levels than pregnant positive patients for all SARS-CoV-2 targets except Nucleocapsid (all p < 0.001), as well as lower IgM Spike (p < 0.05) and RBD (p < 0.01) antibody levels. Conclusions The present study suggests that humoral response following SARS-CoV-2 infection does not appear to differ in pregnant women compared to their non-pregnant counterparts. These findings should reassure patients and healthcare providers that pregnant patients appear to mount a non-differential immune response to SARS-CoV-2.

3.
mSystems ; 7(4): e0010922, 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-1891744

ABSTRACT

A promising approach to help students safely return to in person learning is through the application of sentinel cards for accurate high resolution environmental monitoring of SARS-CoV-2 traces indoors. Because SARS-CoV-2 RNA can persist for up to a week on several indoor surface materials, there is a need for increased temporal resolution to determine whether consecutive surface positives arise from new infection events or continue to report past events. Cleaning sentinel cards after sampling would provide the needed resolution but might interfere with assay performance. We tested the effect of three cleaning solutions (BZK wipes, Wet Wipes, RNase Away) at three different viral loads: "high" (4 × 104 GE/mL), "medium" (1 × 104 GE/mL), and "low" (2.5 × 103 GE/mL). RNase Away, chosen as a positive control, was the most effective cleaning solution on all three viral loads. Wet Wipes were found to be more effective than BZK wipes in the medium viral load condition. The low viral load condition was easily reset with all three cleaning solutions. These findings will enable temporal SARS-CoV-2 monitoring in indoor environments where transmission risk of the virus is high and the need to avoid individual-level sampling for privacy or compliance reasons exists. IMPORTANCE Because SARS-CoV-2, the virus that causes COVID-19, persists on surfaces, testing swabs taken from surfaces is useful as a monitoring tool. This approach is especially valuable in school settings, where there are cost and privacy concerns that are eliminated by taking a single sample from a classroom. However, the virus persists for days to weeks on surface samples, so it is impossible to tell whether positive detection events on consecutive days are a persistent signal or new infectious cases and therefore whether the positive individuals have been successfully removed from the classroom. We compare several methods for cleaning "sentinel cards" to show that this approach can be used to identify new SARS-CoV-2 signals day to day. The results are important for determining how to monitor classrooms and other indoor environments for SARS-CoV-2 virus.

4.
mSystems ; 7(4): e0010322, 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-1891743

ABSTRACT

Surface sampling for SARS-CoV-2 RNA detection has shown considerable promise to detect exposure of built environments to infected individuals shedding virus who would not otherwise be detected. Here, we compare two popular sampling media (VTM and SDS) and two popular workflows (Thermo and PerkinElmer) for implementation of a surface sampling program suitable for environmental monitoring in public schools. We find that the SDS/Thermo pipeline shows superior sensitivity and specificity, but that the VTM/PerkinElmer pipeline is still sufficient to support surface surveillance in any indoor setting with stable cohorts of occupants (e.g., schools, prisons, group homes, etc.) and may be used to leverage existing investments in infrastructure. IMPORTANCE The ongoing COVID-19 pandemic has claimed the lives of over 5 million people worldwide. Due to high density occupancy of indoor spaces for prolonged periods of time, schools are often of concern for transmission, leading to widespread school closings to combat pandemic spread when cases rise. Since pediatric clinical testing is expensive and difficult from a consent perspective, we have deployed surface sampling in SASEA (Safer at School Early Alert), which allows for detection of SARS-CoV-2 from surfaces within a classroom. In this previous work, we developed a high-throughput method which requires robotic automation and specific reagents that are often not available for public health laboratories such as the San Diego County Public Health Laboratory (SDPHL). Therefore, we benchmarked our method (Thermo pipeline) against SDPHL's (PerkinElmer) more widely used method for the detection and prediction of SARS-CoV-2 exposure. While our method shows superior sensitivity (false-negative rate of 9% versus 27% for SDPHL), the SDPHL pipeline is sufficient to support surface surveillance in indoor settings. These findings are important since they show that existing investments in infrastructure can be leveraged to slow the spread of SARS-CoV-2 not in just the classroom but also in prisons, nursing homes, and other high-risk, indoor settings.

5.
mSystems ; 7(3): e0141121, 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1846330

ABSTRACT

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces is emerging as an important tool for identifying past exposure to individuals shedding viral RNA. Our past work demonstrated that SARS-CoV-2 reverse transcription-quantitative PCR (RT-qPCR) signals from surfaces can identify when infected individuals have touched surfaces and when they have been present in hospital rooms or schools. However, the sensitivity and specificity of surface sampling as a method for detecting the presence of a SARS-CoV-2 positive individual, as well as guidance about where to sample, has not been established. To address these questions and to test whether our past observations linking SARS-CoV-2 abundance to Rothia sp. in hospitals also hold in a residential setting, we performed a detailed spatial sampling of three isolation housing units, assessing each sample for SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S rRNA gene amplicon sequences (to assess the bacterial community at each location), and to the Cq value of the contemporaneous clinical test. Our results showed that the highest SARS-CoV-2 load in this setting is on touched surfaces, such as light switches and faucets, but a detectable signal was present in many untouched surfaces (e.g., floors) that may be more relevant in settings, such as schools where mask-wearing is enforced. As in past studies, the bacterial community predicts which samples are positive for SARS-CoV-2, with Rothia sp. showing a positive association. IMPORTANCE Surface sampling for detecting SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is increasingly being used to locate infected individuals. We tested which indoor surfaces had high versus low viral loads by collecting 381 samples from three residential units where infected individuals resided, and interpreted the results in terms of whether SARS-CoV-2 was likely transmitted directly (e.g., touching a light switch) or indirectly (e.g., by droplets or aerosols settling). We found the highest loads where the subject touched the surface directly, although enough virus was detected on indirectly contacted surfaces to make such locations useful for sampling (e.g., in schools, where students did not touch the light switches and also wore masks such that they had no opportunity to touch their face and then the object). We also documented links between the bacteria present in a sample and the SARS-CoV-2 virus, consistent with earlier studies.

6.
Cell ; 184(10): 2587-2594.e7, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1157175

ABSTRACT

The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.


Subject(s)
COVID-19 , Models, Biological , SARS-CoV-2 , COVID-19/genetics , COVID-19/mortality , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL